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Nonlinear Effects in Laser Flash Thermal Diffusivity
Measurements1

J. Gembarovic2,3 and J. Gembarovic, Jr.2

The numerical solution of the nonlinear heat conduction equation is used to
analyze nonlinear effects in the laser flash method, when the thermophysical
parameters of the sample depend on the temperature. A parameter estima-
tion technique is proposed to determine the temperature dependence of the
thermal diffusivity from a response curve. Computer generated data, as well
as real experimental data, were used to demonstrate the reliability of the
technique.
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1. INTRODUCTION

In the laser flash method [1] one surface (at x =0) of a small disc-shaped
sample of thickness L is irradiated by a laser pulse and the resulting tem-
perature rise at the opposite surface (x =L) is used to calculate the ther-
mal diffusivity α of the sample material.

Existing data reduction methods for calculation of the thermal diffu-
sivity from the temperature rise of the sample are based on the assumption
that the thermophysical parameters–heat capacity c and thermal conduc-
tivity λ (and also thermal diffusivity α≡λ/c)–are constants independent of
temperature T within the temperature range of the flash experiment. The
one-(or two-) dimensional linear heat conduction equation
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with initial and boundary conditions relevant to the experiment is solved,
and the thermal diffusivity is calculated by fitting the experimental tem-
perature rise to the appropriate analytical solution of Eq. (1). For most
materials, the temperature range and a final temperature rise �1 K, the
assumption of constant thermophysical properties is valid, and the results
of the thermal diffusivity determination are usually within a couple per-
cent of claimed experimental uncertainty of the flash method.

The use of short and powerful laser pulses to measure very thin sam-
ples leads to a temperature rise much greater than a few kelvins assumed
for a perturbation-type experiment. The assumption that the temperature
rise of the sample is not very large is no longer valid. If the heat capacity
c(T ) and the thermal conductivity λ(T ) vary with temperature, then the
temperature distribution in the sample is found by solving the nonlinear
heat conduction equation

c(T )
∂T

∂t
= ∂

∂x

(
λ(T )

∂T

∂x

)
. (2)

Equation (2) will be solved numerically in this paper for a constant
heat capacity c(T )= c0 and a thermal conductivity that depends on tem-
perature as

λ(T )= a0

a1T +1
, (3)

where a0, a1 > 0 are positive constant parameters. The effect of the tem-
perature dependent λ(T ) on flash method thermal diffusivity measure-
ment was analyzed in Ref. 2 where it was found that nonlinearity can
be neglected up to a level determined by the value of the parameter a1.
We will show that these parameters can be determined from the response
curve in the laser flash experiment using a parameter estimation technique.
Computer generated data, as well as real experimental data, will be used
to demonstrate the reliability of the proposed procedure.

2. NUMERICAL SOLUTION

Equation (2) has been solved numerically using an implicit difference
scheme [3]. The sample thickness L is divided into N = 21 elements. The
sample is initially in an equilibrium state at temperature T0. The heat pulse
is assumed to be instantaneous (at t =0) and its energy is absorbed in the
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first element, raising its temperature to T1. Sample boundaries are insu-
lated.

The temperature Ti,m+1 of the ith element (i = 1,2,3, . . . ,N ) at the
time tm+1 = (m+1)∆t , m=1,2, . . . is given by a system of equations:

T1,m+1 =T1,m +2For(T2,m+1 −T1,m+1),

Ti,m+1 =Ti,m +Fol(Ti−1,m+1 −Ti,m+1)+For(Ti+1,m+1 −Ti,m+1),

for i =2,3, . . . ,N −1,

TN,m+1 =TN,m +2Fol(TN−1,m+1 −T1N,m+1), (4)

where

Fol =
∆tλl

c∆x2
, For = ∆tλr

c∆x2
,

λl =
2λi−1λi

λi−1 +λi

, λr = 2λi+1λi

λi+1 +λi

(5)

and λi is the thermal conductivity of the ith element. A standard iterative
algorithm was used to solve Eq. (4).

The nonlinear temperature rise V (L, t) at x =L was calculated for a
temperature dependence of c(T )=c0, where c0 is a constant value of heat
capacity at T0, and λ(T ) is given by Eq. (3). Since the heat capacity is con-
stant, the temperature dependence α(T ) will be similar to λ(T ).

Figure 1 shows the nonlinear temperature rise V (L, t) as a function
of time for various initial temperatures T1 of the first element. The curves
are normalized to a new steady-state temperature after the pulse and time
is normalized to the halftime value t1/2. (The halftime is the time needed
for the temperature at x = L to rise to half of its new steady-state value
after the pulse.) The ideal curve for constant values of c(T ) = c0 and
λ(T ) = λ0 is also presented in Fig. 1. The shape of the nonlinear curves
differs from the ideal curve. Generally, the nonlinear curves lead the ideal
one in the first half of their rise and lag behind the ideal one in the second
half. Curves for higher T1 rise slower than those for lower T1. The shape
distortion is more noticeable for the curves with higher T1.

The differences between the ideal and nonlinear curves are more
visible in Fig. 2, where a plot of (ln(V )+ ln(t/t1/2)/2) versus t1/2/t is pre-
sented for a different initial temperature T1. The ideal curve, given by

Vi(L, t)= L√
παt

∞∑
n=0

exp
[
− (2n+1)2L2

4αt

]
(6)
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Fig. 1. Nonlinear temperature rise for different initial temperatures T1 of the sample
front surface.

is a straight line with a slope −L2/4αt1/2
.=1.80. The deviations from the

ideal curve shape increase with T1.
The differences in shape between the ideal and nonlinear curves make

it impossible to match a nonlinear curve with an ideal one using a con-
stant value of the thermal diffusivity. Theoretically [4], no single effective
temperature Te can be found for c(Te) and λ(Te) to describe the solution
of the nonlinear equation. Experimental nonlinear curves can be normal-
ized and apparent thermal diffusivity values can be calculated from the
halftime t1/2 using Parker’s formula,

α =0.139
L2

t1/2
, (7)

but the results will be a function of T1 (laser energy), as was observed on
graphite samples [5].

3. PARAMETER ESTIMATION TECHNIQUE

Determination of temperature dependent thermophysical properties
from the measured temperature responses is a coefficient inverse problem
and many numerical and analytical methods were proposed to solve this



Nonlinear Effects in Laser Flash Measurements 1257

0 1 2 3 4
-6

-5

-4

-3

-2

-1

0

1

Ideal

ln
(V

)+
ln

(t
/t1

/2
)/

2

T0=500˚C
T0=1000˚C
T0=1500˚C

t1/2/t
Fig. 2. Function (ln(V )+ ln(t/t1/2)/2) versus t1/2/t for different initial temperatures T1.

problem (see, e.g., Ref. 6). In this paper, we describe a new simple parame-
ter estimation technique to determine unknown coefficients of the temper-
ature-dependent thermal conductivity (diffusivity) given by Eq. (3) from a
measured temperature response in the flash method.

A sensitivity study of the nonlinear response curve showed (see Fig.
3) that its sensitivity coefficients [7] (partial derivatives with respect to
a0, a1, T0, and T1, respectively) are linearly independent, so the coefficients
�β ≡ (a1, a2, T0, T1) can be found simultaneously.
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Fig. 3. Sensitivity coefficients as functions of time.

Ordinary least-squares procedures (Fortran package ODRPACK [8]
were used to find the unknown parameters �β from

min
�β

n∑
i=1

[
fi(ti; �β)−yi

]2
, (8)

where fi(ti; �β) is the temperature point at time ti calculated using the
numerical solution given by Eq. (4) and (ti , yi), i = 1,2,3, . . . , n are the
points of the temperature response curve (observed data).

4. RESULTS AND DISCUSSION

Five different sets of temperature rise were generated by a com-
puter in order to demonstrate the proposed parameter estimation tech-
nique. In this example, the stability and accuracy of the technique are
tested. Set 1 was generated using: L=0.002 m, c0 =106 J · m−3 ·K−1, a0 =
100 W · m−1 ·K−1, a1 = 0.05 K−1, ∆t = 10−6 s, T0 = 0 ◦C, and T1 = 500 ◦C.
The sets 2, 3, 4, and 5 were generated using Set 1 data with different lev-
els of noise added to the temperature points. Superimposed noise imitates
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Table I. Results of Parameter Estimation

Set Ratio
No. N/S T0 (◦C) T1 (◦C) a0 (W · m−1 ·K−1) SD (W · m−1 ·K−1) a1 (K−1) SD (K−1)

1 0 0.00 500.00 100.00 0.00 0.05000 0.00000
2 0.008 0.00 499.96 99.87 0.20 0.04981 0.00025
3 0.017 0.00 499.93 99.74 0.43 0.04962 0.00057
4 0.025 0.00 499.89 99.60 0.64 0.04943 0.00086
5 0.042 0.00 499.85 99.47 0.86 0.04925 0.00114

experimental errors and was generated using a random number generator.
The sets differ from each other by the noise-to-signal ratio.

The results of parameter estimations are listed in Table I. The repro-
ducibility and accuracy of the calculated parameters are relatively high,
even for Set 5 with the highest noise-to-signal ratio. The differences
between estimated and exact values of the parameter are <1% in all cases.
Standard deviation (SD) values of a0 are <1% and SD values of a1 are
<2.5% of the estimated values.

Real experimental data must be carefully examined before the pro-
posed parameter estimation technique is applied. Similar distortion can be
caused by, e.g., a finite pulse time effect when the pulse duration is com-
parable with the halftime value or by a nonlinearity of the temperature
detector used in the experiment. Repeated measurements using different
laser energies, different pulse durations, or using different sample thick-
nesses have to be conducted to identify the presence of nonlinearity in the
response curves.

A strong dependence of the apparent thermal diffusivity on laser
pulse energy for a POCO ZXF-5Q graphite sample at room temperature
was reported in Ref. 5. The apparent values of the diffusivity were lower
for a higher laser pulse energy. A plausible explanation was that the ther-
mal diffusivity of graphite decreases with temperature and the dependence
is stronger at room temperature than at elevated temperatures.

Our laser flash experiments with graphite foam samples at tem-
peratures around room temperature also showed temperature rise curve
distortions similar to the nonlinear curves plotted in Fig. 1. A typical tem-
perature rise of a graphite foam sample (L=2.01×10−3 m, c0 =6.86×105

J · m−3 ·K−1) after the pulse was about 8◦C. The apparent thermal diffu-
sivity was α = 1.19 × 10−4 m2 · s−1. After a finite pulse time correction [9],
the thermal diffusivity value was α = 1.45 × 10−4 m2 · s−1. The results of
our parameter estimation technique were: T0 =99.03◦C, T1 =427◦C, α(T0)=
(2.16 ± 0.15)× 10−4 m2 · s−1, and a1 = 0.093 K−1. The value of the thermal
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diffusivity at T0 calculated using the parameter estimation technique seems
to be more realistic than the corrected apparent value. On the other hand,
the value of parameter a1 indicates that the thermal diffusivity decreases
with temperature more rapidly than was found in the experiment. The
response curve was distorted mainly due to the finite pulse time effect.
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